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The influence of decreasing Arctic sea ice on net primary production (NPP) in

the Arctic Ocean has been considered in multiple publications but is not well

constrained owing to the potentially large errors in satellite algorithms. In par-

ticular, the Arctic Ocean is rich in coloured dissolved organic matter (CDOM)

that interferes in the detection of chlorophyll a concentration of the standard

algorithm, which is the primary input to NPP models. We used the quasi-

analytic algorithm (Lee et al. 2002 Appl. Opti. 41, 575525772. (doi:10.1364/

AO.41.005755)) that separates absorption by phytoplankton from absorption

by CDOM and detrital matter. We merged satellite data from multiple satellite

sensors and created a 19 year time series (1997–2015) of NPP. During this

period, both the estimated annual total and the summer monthly maximum

pan-Arctic NPP increased by about 47%. Positive monthly anomalies in NPP

are highly correlated with positive anomalies in open water area during the

summer months. Following the earlier ice retreat, the start of the high-pro-

ductivity season has become earlier, e.g. at a mean rate of 23.0 d yr21 in the

northern Barents Sea, and the length of the high-productivity period has

increased from 15 days in 1998 to 62 days in 2015. While in some areas, the ter-

mination of the productive season has been extended, owing to delayed ice

formation, the termination has also become earlier in other areas, likely

owing to limited nutrients.
1. Background
Decrease in the summer extent of Arctic sea ice is well known and has been cor-

related with the apparent increase in net primary production (NPP) in the Arctic

Ocean [1–3]. However, many parts of the Arctic Ocean, particularly the shelf

areas, are rich in coloured dissolved organic matter (CDOM) [4], which is inter-

fering with the remote detection of chlorophyll a (Chla, mg m23), the primary

input to most NPP models. Estimates of NPP using standard satellite Chla are

therefore to be treated with caution. In addition to the changes in the magnitude

of NPP, the seasonal timing of NPP and other biological processes may also be

changing [5] and may have consequences for the Arctic food webs.
2. Methods
We applied the quasi-analytic algorithm [6,7] to daily binned level-3 spectral remote

sensing reflectance at approximately 9 km spatial resolution of multiple ocean colour

sensors (OCTS, 1996–1997, version 2014.0; SeaWiFS, 1997–2010, version 2014.0;

MERIS, 2002–2012, ESA second processing; MODISA, 2002–2016, version 2014.0).

The daily time series is incomplete for years 1997 and 2016, which are therefore

excluded from annual calculations. The spectral absorption and backscattering coef-

ficients derived with the quasi-analytic algorithm (QAA) at 440 and 490 nm
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Figure 1. (a) Missing ocean colour data during the winter season (January 2015) shown in white, ice cover ( pink to purple) in the north and the detected
chlorophyll a (blue to yellow) in the south. Monthly time series of NPP (b) and daily NPP per open water area (c) between latitudes 668 N and 848 N. (d )
Annual pan-Arctic NPP. (e) Monthly anomaly of open water area in the Arctic Ocean (between 668 N and 848 N).
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wavelengths were merged from different sensors and compos-

ited over 5 day periods. Polar oceans are notorious for their

cloudiness, which prevents the remote detection of in-water

bio-optical variables. While solar radiation can change drastically

from day to day and affect NPP, in-water components are tem-

porally less variable and were assumed to be constant during

each 5 day period. Daily estimates of NPP were created from

daily solar radiance and 5 day composites of in-water bio-optical

properties. The vertically generalized production model (VGPM

[8]) is a well-known model that ranks among the best in model-

to-model comparisons [2,9,10]. We applied the VGPM to the

Arctic Ocean with Chla derived from phytoplankton absorption

at 440 nm [11], merged photosynthetically active radiation (PAR

[12]), the depth of the euphotic zone calculated from the total

absorption and backscattering coefficients at 490 nm [13] and

using daily optimally interpolated sea surface temperature [14].

PAR was derived by merging estimates from all ocean colour
sensors, and filling remaining gaps using an empirical relationship

between PAR and surface incoming shortwave irradiance from

geostationary and polar orbiting satellites [15]. Daily NPP estimates

were composited into 5 day periods by averaging valid data during

each 5 day period on a grid of 0.258. Temporal interpolation

between composites was used to fill missing pixels. Spatial inter-

polation was used to fill remaining missing neighbouring pixel

values if the corresponding ice concentration [16] was below 15%

using daily sea ice fraction. Sea ice coverage was obtained from

NASA Team algorithm datasets (v. 1.1, http://nsidc.org/data/

nsidc-0051.html) derived from passive microwave data. More

details are provided in the electronic supplementary material.

Global 5 day datasets of oceanic NPP are available [17].

In the processing of ocean colour data, pixels with solar

zenith angle more than 708 (and sensor zenith angle more

than 608) are excluded. During the winter season, this creates

large areas with no ocean colour data (figure 1a). While we can

http://nsidc.org/data/nsidc-0051.html
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Figure 2. Relationships between anomalies of open water area and pan-Arctic NPP between latitudes 668 N and 848 N in June (a) and July (b). Spatial trends in
interannual changes in ice concentration (left panel) and in NPP (right panel) for the months of June (c) and August (d ). Blue means decrease and red means
increase (both at 95% significance). The trends are calculated for the periods of, respectively, 1979 – 2015 for ice concentration and 1998 – 2015 for NPP. (e) Changes
in the timing of the start ( filled circles, mean slope 24.5 d yr21) and end (open circles, mean slope þ1.4 d yr21) of the open water period (ice fraction less
than 0.15) in northern Barents Sea. ( f ) Changes in the start ( filled circles, mean slope 23.0 d yr21) and end (open circles, mean slope 20.3 d yr21) of the
high-productivity (NPP �0.5 gC m22 d21) period in northern Barents Sea.
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assume no photosynthesis in the polar night (poleward of the

polar circle at approximately 65.58 N), the region of missing

data starts already poleward of about 508. The area of missing

ocean colour data in open water reaches over 11 million km2

every winter in the Northern Hemisphere and is slightly increas-

ing owing to decreasing ice cover. NPP for pixels that had valid

PAR but no ice and no ocean colour data after interpolation and

extrapolation was calculated assuming a low Chla value

(0.1 mg m23) with estimated PAR. While the total area of this

gap filling was large, the effect on total NPP was relatively

small owing to the low PAR.
(a) Interannual time series of net primary production
in the Arctic Ocean

The monthly maximum in total integrated pan-Arctic NPP

(figure 1b) has increased approximately 47% from the first half
of the time series (1998–2006) to the second half of the series

(2007–2015) and is currently estimated at approximately

0.15 PgC month21. NPP increased sharply from 2006 to 2007,

and interannual changes both before and after that were much

smaller. In contrast to the increasing NPP, the productivity per

open water area (figure 1c) has declined by 12.9% from 1998–

2006 to 2007–2015, particularly in the period 2009–2010. The

annual pan-Arctic NPP (figure 1d) has increased more smoothly

but the increase is also almost 47%. It appears that both the

summer maximum and the annual total reached a plateau in

2011–2012. These changes in NPP are inversely correlated with

the extent of sea ice and positively with the open water area.

Years with large positive open water anomaly, e.g. 2007 and

2012 (figure 1e), have also large positive anomalies in NPP.

Monthly NPP anomalies (calculated by subtracting the clima-

tological monthly mean from the value of the current month) are

positively correlated with anomalies in open water area

(figure 2a,b) during the summer months with the strength of
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the correlation being highest in July. The effectiveness of open

water to generate additional NPP (i.e. the slope of the regression

between open water anomaly and NPP anomaly) is highest in

June, followed by July and May.

The areas where interannual changes in ice concentration

and NPP have occurred are different from month to month. In

June (figure 2c), the decrease in ice concentration has occurred

primarily in the northeastern Barents Sea and between Green-

land and the North American continent. There is a good

correspondence between areas of June decrease in ice concen-

tration and the increase in NPP, but the area of increased NPP

seems to be larger, as if the effects of decreased ice have ‘spilled

over’ to a larger area. In July and August, the areas of increasing

NPP move gradually to the east (to the Kara and Laptev seas)

and the correspondence between the decrease in ice and

increase in NPP becomes low. In August (figure 2d ), the

decrease in ice concentration has occurred primarily off Siberia

and in the Beaufort and Chukchi seas, whereas major increases

in NPP occurred primarily in different areas (e.g. Barents and

Laptev seas).

Owing to earlier ice retreat and later freeze-up (figure 2e),

the duration of the ice-free period has increased in many areas,

e.g. in the Barents Sea. In the northern Barents Sea, the

mean trend towards earlier ice retreat has been at a rate of

24.6+ 0.6 d yr21 and the freeze-up has become later at a mean

rate of 1.4+ 0.3 d y21. As a result, the ice-free period there has

increased 3.5-fold, from approximately 80 days in 1979 to

approximately 289 days in 2015 (standard error of the estimate

is 40 days). In the same area, the start of the productive period

with high NPP (greater than or equal to 0.5 gC m22 d21) has

advanced at a mean rate of 23.0+0.6 d y21 (figure 2f ) but, in

contrast to the later formation of ice, the timing of the end of

the high-productive period has not changed significantly. This

can be explained by the fact that after the end of the spring

bloom, primary production is limited by nutrients and the

apparent decrease in satellite-detected NPP may be accentuated

by the sinking of the Chla maximum. Still, the length of time

between the start and end of the high-productivity period has

increased from approximately 15 days in 1998 to 62 days in

2015 (standard error of the estimate is 13 days). For the whole

Artic Ocean between latitudes 668N and 848 N, the mean start

of the high-productivity (greater than or equal to

0.4 gC m22 d21) season has advanced at a mean rate of 20.4+
0.1 d yr21, and the end is delayed at a mean rate of 0.6+
0.1 d yr21. The delay may be related to the appearance of

autumn blooms in some areas [18].
3. Conclusion
— The summer monthly maximum and the annual pan-

Arctic NPP have increased by 47% from the first half of

the time series (1998–2006) to the second half of the

series (2007–2015) but changes after 2011 have been

minor. The specific productivity per open water area

has decreased by 12.9% from the first half to the second

half of the series.

— The monthly anomalies in NPP are positively correlated

with the summer anomalies in open water area: open

water area in June has the strongest effect on increasing

NPP, followed by July and May.

— The areas of interannual increase in NPP correspond well

to the areas of decreased ice concentration in June, but the

correspondence is weak in July and August.

— The high-productivity period starts earlier and extends

longer when averaged over the whole Arctic Ocean. In

an area of the most dramatic change, the northern Barents

Sea, sea ice has been retreating earlier at a mean rate of

24.5 d yr21 and freeze-up is later at 1.4 d yr21. The

high-productivity season is also starting earlier at a

mean rate of 23.0 d yr21 but the termination is not

becoming later.
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